
Basics of Java: Statements

Nathaniel Osgood

MIT 15.879

April 11, 2012

Recall: Methods
• Methods are “functions” associated with a class

• Methods can do either or both of
– Return a value (doing computation as required)

• Note that this value could be a reference to a value collection

– Performing actions
• Printing items

• Displaying things

• Changing the state of items

• Best practices
– A method should do one of the above, not both!

• Should either be a “query” (return values) or a “command”
(perform action)

– Methods should be well named (communicate intention)

Method Elements: 2 Pieces
• Header: Specifies what

– “Types”
• Expects as “arguments” (formal parameters – values given to the

function)
• Returned Value

– “Exceptions” that can be thrown

• Body: Describes the algorithm (code) to do the work
(the “implementation”)

• Best Practice: A well-documented (specified) method is
has a contract that specifies what it does
– we give it parameters with certain characteristics, and it

does a certain job for us
– We don’t have to worry about details of how it works

• The name & “header” of the function collectively give
much hints as to the contract

Method Bodies & “Statements”
• Method bodies consist of

– Comments (mostly ignored by “build”)

– Variable Declarations

– Statements (most involving “Expressions”)

• We discuss each of these below

Comments

• Comments in Java are indicated in two
different ways

– Arbitrarily long: Begun with /* and ended with */

• These can span many lines

– Within a line: after a //

• Use comments to describe your intentions!

Rerouting Around Barriers (Boundaries & Water)
Poor Style – entire logic, conditions (checks on boundaries, whether water) & rerouting
Logic should all be in separate functions from this & from each other). Remove constants

Method Bodies & “Statements”
• Method bodies consist of

√ Comments (mostly ignored by “build”)

– Statements (most involving “Expressions”)

Java Statements
• In contrast to Java Expressions (which calculate a

value), Java “statements” do something – they
effect some change (to “program state”)

• Statements are “commands” that, for example
– Change the value of a variable or a field (this is an

assignment expression)
– Return a value (computed by an expression!) from the

function
– Call a method (call being in an expression)
– Perform another sequence of statements a certain

number of times (given by an expression) , or until a
condition (given by an expression) is true

– Based on some condition (given by an expression),
perform one or another sequence of statements

When AnyLogic seeks action code (e.g. as a handler), we can give it
a statement (or, typically a sequence of one or more statements).

Common Java Statements
• if

• for

• while or do-while

• Try-Catch-Finally

• Throw (Trigger) exception

• An expression (typically side-effecting – should be
terminatede by a “;”)
– Assignment

– Call to a function

• Composite statement block (multiple statements
enclosed in a “{}”)

For statements

• “For” statements “iterate”, repeatedly
executing some inner statement many times

• Several variants are available

 for (int i = 0; i < 100; i++)

 statement

 for (Agent a : collection)

 statement

Iterates over all
of the agents in
Collection (with a
bound to each
element of
collection in turn)

Note variable declaration.
This variable can then be
used within the statement
itself

Iterates over all
integers from 0 to 99
(inclusive), with i bound
to each integer in turn

Heading Towards Resource

Determining current position &
Searching for quickest way to find
water from that position.
(should be in separate function!)

If Statements

• An if statement tests a condition expression
(“predicate”), and – based on the result – either
executes one statement or another (possibly empty)
statement

 if (condition) if (condition)

 consequent or alternative

 else

 alternative “falls through” to later code if condition is false.
This is like having an “empty” (blank)
alternative

This can be any expression that
evaluates to a boolean (true or false)
value

Handling of Movement Logic

Handling the case of reaching water
 when thirsty

Finding location
in continuous space
(x,y) & in terms of
Discrete vegetation
Space (c,r).
Poor style -- Should be In
separate function

Distinguishing the case
of many & few trees

Rerouting Around Barriers (Boundaries & Water)
Poor Style – entire logic, conditions (checks on boundaries, whether water) & rerouting
Logic should all be in separate functions from this & from each other). Remove constants

A more complex condition (should
really place condition in 1-2 functions
that returns a boolean, and just call
the functions! – can reuse elsewhere)

New Direction Change Function Info

New Direction Change: Function “Body”

Setting Agent Speed (set so as to reach target in
 fixed time until next target shift)

Initiates movement towards (randomly chosen)
destination

“While”/“Do while” loop

• Executes a statement as long as some
condition is true

• The classic “while” loop has the test at the
beginning

• The “do while” has the test at the end of the
loop

While loops

Switch/Case

• A “Switch” statement and its associated “case”
clauses are a form of conditional somewhat like a
multi-way “if” statement

• Contrast:

– If statement: Is provided with a boolean value, and has
one clause for the case where this is true, and
(optionally) another for case where it is false

– Switch statement: This is provided with a more general
value (int, Enum, char, short, byte, character, in Java 7 a
String), and has an arbitrary number of “case” clauses,
each to handle different possible concrete values

Example Switch Statement

Composite Statements (“Blocks”)
(Delineated by “{ }”)

Innermost “{ }”is not currently needed,
Because only one statement – could
remove “{ }” and the statement inside
would still be within the “if” “consequent”.
But it is safer to have a block, in case further
statements are added later

Variables declared
inside block
“disappear” after
leaving the block

Composite Statements and Variables

• Variables can be declared within a composite
statement

• The region of the variable’s visibility (i.e. the
scope of the variable) is from there to the end
of the enclosing statement

• The entire body of a method is a compound
statement (hence the “{ }” surrounding it)

Recall: Variable Declarations
• Variables in Java are associated with “types” and

can contain values

• When we “declare” a variable, we indicate its name
& type – and possibly an initial value

Variable Declaration Statement

This declares the variable y (using as its
initial value the value returned by
this.getY())

Expression Statements

Assignment expressions as
an expression statements
(including “count++”, which is equivalent
to “count=count+1”)

Method call
expression as
an expression
 statement

Exceptions
• Not uncommonly, things may “go wrong” during

execution of code

• We frequently want a way to signal that something has
gone wrong
– Stop normal processing of the code

– Go “up” to a context where we know how to deal with
(handle) the error
• Up is defined in terms of the “call stack” – we wish to return to

successive callers until one handles this condition

• To signal such exceptional conditions, java uses
Exceptions

• Exceptions in Java are thrown where they occur &
caught in “handlers” where we wish to handle them

Try-Catch Statements

try

 { try-block }

catch (ExceptionType1 e)

 { catch-block1 }

catch (ExceptionType2 e)

 { catch-block2 }

…

catch (ExceptionTypen e)

 { catch-blockn }

Exceptions thrown in this block (a
compound statement)
that are (most particularly) of this
exception type are then handled
by running this block

Exceptions thrown in the “try-block”
that are of this exception type are then
handled by running this block

Example Applications of “Try-Catch”

Here we
1) Try to parse the
line so as to extract two
integers from it
2) Connect the corresponding
individuals in the population

Handles cases
where specified
indices are
out of bounds

Handles cases where
we can’t find the expected
numbers in the string

